

A New Application for Automated Video Identification of Marine

Species (AVIMS)

Scottish Government Marine Directorate

Scottish Marine and Freshwater Science Vol 14 No 7

M Mackiewicz, G French, M Fisher

Main Report

A New Application for Automated Video Identification of

Marine Species (AVIMS)

Main Report

Scottish Marine and Freshwater Science Vol 14 No 7

M. Mackiewicz, G. French and M. Fisher

Published by the Marine Directorate of the Scottish Government

ISBN: 978-1-83521-505-0

ISSN: 2043-7722

DOI: 10.7489/12473-1

The Marine Directorate of the Scottish Government is responsible for the

integrated management of Scotland’s seas. Scottish Marine and Freshwater

Science is a series of reports that publishes the results of scientific research

and monitoring carried out by the Marine Directorate. It also publishes the

results of marine and freshwater scientific work that has been carried out for

the Marine Directorate under external commission. These reports are not

subject to formal external peer-review.

This report presents the results of scientific work commissioned by the Marine

Directorate and carried out at the School of Computing Sciences, University of

East Anglia.

This report should be quoted as:

Mackiewicz, M., French, G. and Fisher, M. (2023). A new application for

automated video identification of marine species (AVIMS). Scottish Marine

and Freshwater Science Vol 14 No 7, 18pp. DOI: 10.7489/12473-1.

© Crown copyright 2023

You may re-use this information (excluding logos and images) free of charge

in any format or medium, under the terms of the Open Government Licence.

To view this licence, visit: Open Government Licence

(nationalarchives.gov.uk) or email: psi@nationalarchives.gsi.gov.uk.

Where we have identified any third party copyright information you will need to

obtain permission from the copyright holders concerned.

https://doi.org/10.7489/12473-1
https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
mailto:psi@nationalarchives.gsi.gov.uk

1

A New Application For Automated Video Identification Of Marine

Species (AVIMS)

Main Report

M. Mackiewicz, G. French and M. Fisher

School of Computing Sciences, University of East Anglia,

Norwich Research Park, Norwich. NR4 7TJ

Abstract

In the course of its environmental monitoring activities, the Scottish

Government’s Marine Directorate collects a large amount of underwater video

to, for example, obtain information on the numbers of fish in rivers or on

species living on the seabed. Manual analysis of this footage is laborious and

costly, but Machine Learning algorithms can now be used to automate such

image analysis. The Marine Directorate commissioned the University of East

Anglia to develop a web-based application to allow staff to create, train and

execute machine learning-based (semi-)automated analysis of video footage

without a need to interact with the underlying computer code. The application

was tested using three diverse sets of video footage and found to be usable

by staff without computer science or coding experience. The tool was able to

detect and count sea pens in footage from towed underwater vehicles, salmon

smolts at sea in underwater footage from towed fishing gear and adult salmon

and sea trout in footage from underwater or overhead cameras at fixed

locations on rivers. Improving the accuracy of the models at detecting and

counting organisms of interest will require the use of larger annotated

datasets in further training of the algorithms, but the current application

provides a basis for further developing these.

Executive summary

In this project we developed a web application entitled Automated Video

Identification of Marine Species (AVIMS). The project was funded by Scottish

Government Contract, CASE/216380. The objective was to develop an

automated video analysis capability with a user-friendly graphical interface

which could be used by the Scottish Government’s Marine Directorate

biologists and stakeholders’ non-specialist staff who do not have computer

science and coding expertise.

2

The Marine Directorate collects a large amount of underwater video for a

number of different purposes. Analyses of these video data is time-

consuming, often requires a skilled taxonomist and hence constitutes a

significant draw on resources. The high cost of the analyses of this large

amount of data often results in situations where only a subset of the available

video is fully analysed. Consequently, automated video analysis software

performing the above tasks would be highly desirable as it would reduce the

costs of carrying out the analyses and allow for the analysis of all available

data. It is expected that due to a steady and rapid improvements in new

sensor/camera technology and their decreasing costs, the amount of video

data available will only increase making the current processing bottlenecks

even more acute.

To achieve that goal, the Scottish Government funded an earlier piece of work

in this area - Automated Identification of Fish and Other Aquatic Life in

Underwater Video (Blowers et al. 2020) in which the authors reviewed current

image and video analysis methods and how these can be applied to different

types of video footage and data extraction requirements used by the Marine

Directorate. The authors also made recommendations for how video analysis

could be automated using state of the art and open-source machine learning

(deep learning) algorithms. We have followed the recommendations of

Blowers et al. (2020) closely, making a number of important refinements. Our

machine learning solution has been integrated and deployed as a user-

friendly web application - AVIMS.

AVIMS allows users without computer science / coding experience to create,

train and execute machine learning models without any need for interaction

with the underlying code. The application supports computer vision models

which fall into the common framework of detection of individuals from a

predefined set of marine species, tracking detected individuals across the

consecutive frames in the video, and finally, counting all distinct entities in the

video for each species of interest (detect/track/count).

The workflow of our web-based application implementing the above

detect/track/count computer vision framework allows users to: create new

survey types; define a set of species of interest for each survey type; upload

video and image data for training machine learning models; annotate video

and image data with objects of interest; create datasets comprising annotated

3

data for training machine learning models; train machine learning models;

upload new videos for the analysis by the machine learning models created in

the previous steps of the workflow and view or download the analysis results.

The web application uses distributed computing to perform the required tasks.

The computationally intensive tasks which include training machine learning

models and analysing new videos are sent to a separate machine specifically

equipped to handle this type of computations where they wait for their turn in a

queue.

The web application has been tested by the development team and Marine

Directorate scientists on several survey types including overhead in-river fish

counters, salmon smolts entrained by a trawl and videos of the seabed. The

initial machine learning models created in the web application have been

shown to perform the required tasks. This said, in order for the system to

achieve the level of accuracy that is expected from a practical application, the

current small amount of annotated video data will need to be expanded to

allow the machine learning models to better learn the appearance of various

marine species of interest. This can be achieved from within the delivered

AVIMS application.

4

Contents

Abstract .. 1

Executive summary .. 1

Contents... 4

Abbreviations ... 5

Introduction .. 6

Methodology and design .. 7

Computer Vision Approach .. 11

Object Detection .. 11

Object tracking ... 13

Hardware and Software Details ... 13

AVIMS site .. 14

AVIMS worker .. 14

Datasets and Experiments ... 15

Other Resources .. 17

References... 17

Annex Materials ... 18

Contact ... 18

5

Abbreviations

AVIMS Automated Video Identification of Marine Species

CNN Convolutional Neural Network

GPU Graphics Processing Unit

GUI Graphical User Interface

mAP Mean Average Precision

OS Operating System

UEA University of East Anglia

6

Introduction

This report describes the system called the Automated Video Identification of

Marine Species (AVIMS) that was developed by the authors as part of the

Scottish Government contract, Ref: CASE/216380.

The objective of this project was to develop an automated video analysis

application with a user-friendly interface which could be used by Marine

Directorate biologists and stakeholders’ non-specialist staff, without the need

for coding/computer science expertise. The requirement was that only open-

source algorithms are to be used.

The project was meant to build upon a previous project funded by the Scottish

Government - Automated Identification of Fish and Other Aquatic Life in

Underwater Video (Blowers et al., 2020), which reviewed and recommended

various approaches to automated image analysis in underwater video. The

immediate aim of this project was to produce a software tool to allow the

Marine Directorate to make cost-effective use of the video data which is used

to underpin scientific advice for Ministers.

Marine Directorate collects a large variety of underwater video for a number of

different purposes. The data comes from cameras which can be towed (e.g.

images of the seabed) or fixed (e.g. attached to drop-frames or trawl nets, or

deployed at underwater turbines or in-river fish counters).

Analyses of these video data is time-consuming, often requires a skilled

taxonomist and hence constitutes a significant draw on resources. The high

cost of the analyses of this large amount of data often results in situations

where only a subset of the available video data can be fully analysed.

Consequently, an automated video analysis software performing the above

tasks would be highly desirable as it would reduce the costs of the existing

activities and allow for the analysis of all available data. It is expected that due

to a steady and fast improvements in the new sensor/camera technology and

their decreasing costs, the amount of video data available will only increase

making the current processing bottlenecks even more acute.

To achieve that goal, the Scottish Government funded an earlier piece of work

in this area (Blowers et al., 2020) where the authors reviewed current image

and video analysis methods and how these can be applied to different types

of video footage and data extraction requirements used by the Marine

7

Directorate. The authors also made recommendations for how video analysis

could be automated using open-source machine learning algorithms. Our

work builds on some of the recommendations from that work as well as on our

own expertise in the field of computer vision and software development.

The following three sections describe the Methodology and Design of the

AVIMS web application, the computer vision approach we have chosen, the

hardware and software specification, the datasets and experiments, and the

other resources.

Methodology and design

The overall objective of this project was to develop an application that

provides a user-friendly interface that allows Marine Directorate biologists –

who do not have machine learning or programming expertise – to train

computer vision and machine learning models for the purpose of analysing

video footage, detecting and recognizing a range of species of fish and

benthos.

Our developed system is built on the work of (Blowers et al., 2020) and our

prior experience from the EU funded H2020 Smartfish (SMARTFISH H2020 –

Innovation for Sustainable Fisheries (smartfishh2020.eu), French et al., 2020)

and JellyMonitor (French et al., 2018; Gorpincenko et al., 2020). Blowers et al.

provided a feasibility study that considered a handful of entities of interest

extracted from a few hundred video frames. Their work demonstrated the

power of convolutional neural networks (CNNs) over other more traditional

approaches and suggested a possible system architecture. We followed

Blowers et al.’s recommendations closely, making a number of important

refinements based on our experience developing larger scale systems

capable of handling many more entities of interest.

In the initial phase of the project, a number of meetings with Marine

Directorate scientists took place which helped us to design and iteratively

refine our approach so that the end product met Marine Directorate

requirements. During this phase of the project we also obtained the video

footage from Marine Directorate which included overhead or underwater

footage from fish counters, fish surveys and seabed surveys. In this phase we

considered whether our system will be a standalone desktop or a web based

application. We decided to proceed with the latter as this was considered to

meet the project requirements. The web based solution also offered the

http://smartfishh2020.eu/
http://smartfishh2020.eu/

8

possibility of concurrent and remote working with the evolving prototypes of

the tool by a number of Marine Directorate scientists. This work included the

upload of the datasets, the annotation of parts of the uploaded datasets and

provision of feedback to the development team.

Our application allows users without computer science / coding experience to

create, train and execute computer vision models without any need of

interaction with the underlying code. The application supports computer vision

models which fall into the common framework of detection of objects from the

predefined set of classes (schema), tracking detected objects across the

consecutive frames in the video, and finally, counting all distinct objects in

video for each class in the schema.

The workflow of our web-based application which implements the above

computer vision framework is as follows:

Survey type. The application supports users in accomplishing a wide variety of

tasks, e.g. counting fish and benthos in footage of the seabed or taken in fish

survey work, and counting salmon in overhead footage from in-river fish

counter sites. Given the differing appearance of the targets and the

background in these tasks, the best performance is obtained by training

separate models, even if both tasks share a general goal - counting entities of

interest in a video. The application permits users to create different survey

types for the various tasks that they wish to train models for.

Schema design. Given that each survey type is aimed at accomplishing a

different task, the entities of interest that the user wishes to quantify are likely

to differ. The application therefore provides an interface that allows the user to

specify the list of species or classes of fish or other entities that the model

should count within the video. Each survey type has its own schema that

corresponds to the goals of the survey.

Video import. Videos selected by the user are added to the survey type with a

view to extracting training images.

Extraction of images from video. Still images are extracted from the video files

to be annotated by the user in the subsequent stages. Here, the user is

required to choose which frames in the video they wish to include in the

dataset that will be used to train and test the machine learning model/s. While

extracting and annotating every frame may yield a robust model, the effort

9

required to manually annotate potentially thousands of images will likely make

this prohibitive. The user is presented with the graphical tool utilizing a

traditional video slider where they scroll the video and choose the video

frames they wish to be included in the dataset. These should be

representative of the conditions in which the model is required to work.

Annotation. The selected frames from the imported video/s need to be

annotated by expert taxonomists in order to provide the ground-truth data for

training and testing the trained machine learning models. The annotation tool,

which was built on our earlier work (GitHub - Britefury/django-labeller: An

image labelling tool for creating segmentation data sets, for Django and Flask

(github.com)), is presented to the user, allowing them to identify entities of

interest and annotate them, either using polygonal annotations or ellipses. We

anticipate that after testing the model the user may wish to annotate more

data in order to improve the model performance.

Dataset construction. Machine learning requires an annotated training and

testing set for training the model and evaluating its performance respectively.

Segments from a single video are likely to share common visual appearance

characteristics, e.g. lighting or turbidity due to time of day and weather

conditions. Training a model on footage drawn from one part of a video would

likely result in higher testing scores on footage from a different part of the

same video than is achievable in the desired practical scenario of using the

model to analyze footage from an as-of-yet unseen site. Here, our system

allows for a number of approaches regarding how the data should be split so

that the testing results are indicative of the future performance.

Training and Testing. A subset of annotated images is used to train the model.

This involves iteratively presenting images to the neural network and

optimizing the network parameters. This is computationally expensive and can

take hours to complete on a GPU server. A proportion of the dataset

constructed above is marked for testing. These images are held out during

training i.e. are not part of the training set, and given to the model for

inference at this stage. The predictions generated by the model are

compared to the manually generated ground-truths. The system determines

which objects of interest the model failed to detect (false negatives) and which

detections produced by the model were spurious (false positives). The user is

presented with these results.

https://github.com/Britefury/django-labeller
https://github.com/Britefury/django-labeller
https://github.com/Britefury/django-labeller

10

The mAP (mean Average Precision) is used as a measure of system accuracy

during training. This figure combines model accuracies (average precisions)

for each class separately, which are then averaged, forming one figure - mAP.

For example, a mAP of 80% should be highly reliable over all classes. In this

case, a user can be relatively confident about the model predictions and the

subsequent tracking results, as long as the video passed for the subsequent

analysis/inference (see Inference below) is "similar" to what the model has

been trained on.

Object tracker. Without an object tracker it is not possible to count objects in a

video. The object detection model trained in prior stages detects entities in

single frames. Using this alone would result in a significant over-count as an

entity will be counted multiple times, once for each frame in which it is

detected. The task of the object tracking system is to associate detections that

correspond to a single entity across the frames in which that entity is visible.

The user is presented with an interface that allows them to tune the tracker in

order to achieve the most accurate results.

Inference (analysis of new videos). Once a model has been trained and

achieved an acceptable level of accuracy, the system uses the trained model

to analyze videos provided by the user, outputting the desired results. This

stage can also be computationally expensive (especially for long videos) and

usually requires high performance computer hardware.

Here, the user chooses a machine learning model for the task at hand and

selects a set of videos for analysis. Once selected, the system processes the

videos in turn, saving the event logs to a .csv and .json files which are

available to the user for viewing either from the application GUI or for the

download. The event logs contain an entry for each detected entity. The entry

consists of a time stamp, the event duration, and a predicted class label of the

object detected.

Moreover, we considered adding a confidence score for each detection.

However, eventually we decided not to add this feature as we did not have a

reliable way of generating a confidence score that is correct and meaningful.

While the system could provide such scores in theory, our

experiments/observations show that these would not be helpful i.e. they are

not really what a human would consider confidence/probability.

11

At the end of this stage, the user is also given an opportunity to add the

video/s that have just undergone inference to the training dataset to improve

the potential subsequent iteration of the machine learning model. This may be

particularly worthwhile in cases where videos are substantially different to

those present in the dataset used to train (and test) the model and have

consequently returned unsatisfactory results in the inference stage. This

maximizes the improvement in performance obtained by expanding the

machine learning dataset.

Our application supports a rapid annotate and test cycle, allowing the user to

quickly assess the performance of the model and grow the training set in

order to achieve the desired level of performance as quickly as possible.

Computer Vision Approach

The AVIMS system adopts a detect and track approach. An object detection

model is applied to each frame in a video. The object detections resulting from

this are passed to an object tracker that joins them into tracks that correspond

to objects that are visible throughout multiple frames of a video.

Object Detection

Further to the recommendation of (Blowers, Evans and McNally, 2020), our

application supports instance segmentation in addition to object detection.

Where an object detection algorithm detects the presence of an object in an

image and estimates its size, an instance segmentation algorithm proposes

an outline surrounding the region of the image that the object covers. This can

be advantageous in situations where the object density is very high, as the

rectangular region proposed by an object detector can cover several objects,

making the intended target ambiguous.

The work of (Blowers, Evans and McNally, 2020) outlines technical details of

some of the components described below. They discussed the Google Object

Detection API – that is part of Tensorflow – as a potential approach for object

detection. Tensorflow is one of a number of open source deep learning

systems that are available.

Many of the computer vision libraries provided by deep learning toolkits

implement the Faster R-CNN object detection algorithm that proved to be a

strong contender in (Blowers, Evans and McNally, 2020). It is expected that

12

the various implementations will offer similar accuracy. One such

implementation we have used in the past is provided by the torchvision library

(Torchvision 0.16 documentation (pytorch.org)) that is part of the PyTorch

ecosystem (PyTorch - an open source machine learning framework

(pytorch.org)). PyTorch is an open source deep learning toolkit developed by

Facebook AI Research (FAIR) whose goals are very similar to those of

Tensorflow. We also note that torchvision provides an implementation of the

Mask R-CNN instance segmentation algorithm that we wished to utilise. Our

choice of Pytorch over Tensorflow has been motivated by the ease of

development using PyTorch in comparison to other systems and the ease with

which it can be incorporated into the final deliverable application. Other

systems including TensorFlow often require the installation of several

dependent packages, complicating the installation process and also

subsequent maintenance.

Consequently, in this application we utilize the Faster-RCNN algorithm

implementation provided by torchvision. They provide a model that combines

an ImageNet (ImageNet (image-net.org)) pre-trained ResNet-50 (Deep

Residual Learning for Image Recognition (arxiv.org)) backbone with an FPN

head (Feature Pyramid Networks for Object Detection (arxiv.org)) and is fine-

tuned for object detection using the CoCo dataset (COCO - Common Objects

in Context (cocodataset.org)). We adapted this network by removing the final

class prediction and bounding box regression layers and replacing them with

new layers with the appropriate outputs for the object classes defined by the

labelling schema designed by the AVIMS site users. The network was fine-

tuned using the training dataset.

AVIMS site offers the option – in fact defaults to it – of detecting objects as

oriented ellipses rather than axis-aligned bounding boxes. Rather than using a

specific oriented object detection network, we train a Mask-RCNN (Mask R-

CNN (arxiv.org)) instance segmentation model. We convert the oriented

ellipse labels to masks with oriented elliptical shapes that are used as Mask-

RCNN training targets. Our algorithm takes the predicted instance mask and

computes the closest fitting oriented ellipse using the regionprops function

provided by the SciKit-Image library (scikit-image: Image processing in Python

(scikit-image.com)).

https://pytorch.org/vision/stable/index.html
https://pytorch.org/
https://pytorch.org/
https://www.image-net.org/
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1612.03144
https://cocodataset.org/
https://cocodataset.org/
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1703.06870
https://scikit-image.org/
https://scikit-image.org/

13

Object tracking

We noted the challenges posed by the requirement of accurate object

tracking. Blowers, Evans and McNally (2020) found that inaccuracies in this

component resulted in overcounting. We also noted the suggestion that the

DeepSORT algorithm might provide a good solution to our object tracking

problem.

Accurate object tracking is dependent on accurate input from the object

detector (Bewley et al. 2016); a prior stage in the inference pipeline.

Inaccurate predictions from the detector are likely to negatively impact

tracking performance. Furthermore, we note that the DeepSORT algorithm

uses an association metric model for the purpose of object re-identification. It

is used to estimate the likelihood that detections from different frames

represent the same object. This model is trained using an annotated object

tracking dataset. An object tracking dataset consists of annotated videos

rather than single images and that each object must be annotated in every

frame in which it can be seen. We note that annotating all frames in a video

substantially increases the amount of manual effort required. While it is

possible that the annotation tool forming the part of our web application could

be extended for this purpose, the human effort required to annotate enough

videos to train a sufficiently accurate model can make this approach

practically infeasible. This is the reason why we have chosen the SORT

algorithm (Bewley et al., 2016) for our object tracker; effectively DeepSORT

without the association metric model. SORT takes the predictions of our

object detection model as input and joins the per-frame predictions into object

tracks. We use our own implementation of SORT. We use the Kalman filter

implementation provided by the filterpy library.

Hardware and Software Details

In the following two subsections, we give hardware and software details of the

application website (AVIMS site) and of the GPU worker (AVIMS worker)

where the time consuming machine learning training and inference are

performed.

14

AVIMS site

Server Hardware and Operating System (OS)

Our web-server is a virtual machine with 4GB of RAM running with a larger

server. We use the Ubuntu Linux OS and NGINX web server. Our data is

stored in a PostgresSQL database. Large files such as image and video files

are stored on the file system.

Web application

Our web application uses the Django web application framework (The web

framework for perfectionists with deadlines | Django (djangoproject.com)).

Django provides an object relational mapper that provides object oriented

access to the rows stored in the PostgresSQL database. Its template system

simplifies the design of HTML web pages that incorporate data extracted from

the database.

We utilized the Twitter Bootstrap 4.3.1 framework (Introduction · Bootstrap

(getbootstrap.com) to provide layout and user interface controls. AVIMS uses

the Django-labeller labelling tool (GitHub - Britefury/django-labeller: An image

labelling tool for creating segmentation data sets, for Django and Flask

(github.com)) to allow users to annotate images quickly and effectively.

Video handling

The video files provided by the Marine Directorate came in a variety of

formats, depending on their source. Early in the project we found that it was

necessary to convert the video files to a common format. For this, we adopted

FFMPEG (FFMPEG - A complete, cross-platform solution to record, convert

and stream audio and video (ffmpeg.org)). FFMPEG was also able to convert

interlaced video to a non-interlaced format in the instances where this was

necessary.

AVIMS worker

Hardware

Training object detection models and analysing video files requires the use of

a GPU. We therefore performed these tasks on a separate machine with the

nVidia 1080-Ti GPU, 32GB RAM and an Intel Core i7 CPU.

https://www.djangoproject.com/
https://www.djangoproject.com/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://github.com/Britefury/django-labeller
https://github.com/Britefury/django-labeller
https://github.com/Britefury/django-labeller
http://ffmpeg.org/
http://ffmpeg.org/

15

Software

We used the Python Celery distributed task queue (Introduction to Celery —

Celery 5.3.4 documentation (celeryq.dev)) to provide a task queue to run the

machine learning tasks required by AVIMS.

When an AVIMS user initiates a model training or video analysis job, the task

is appended to the celery queue that runs on the web server. This job is

retrieved by the GPU worker machine that downloads the relevant data from

the web server. It runs the task while periodically reporting progress and

finally uploads the results to the web server on completion.

Datasets and Experiments

During the development of the web application, we were provided with several

video datasets which were meant to aid the development and testing of

various aforementioned features of the AVIMS application. The datasets have

been provided throughout the project by means of the evolving prototypes of

the web application. They have been partially annotated by biologists at

Marine Directorate using AVIMS tools. This allowed us to produce initial

machine learning models and test further functionalities of the AVIMS

application including model training, results reporting and inference.

The datasets provided have been split according to a survey type as

described in the Methodology section and included : Sea Pens, Rocky Reef,

River – infrared, River – daylight, Vaki light boxes, Smolt Trawl, fan mussels

and horse mussels.

It is important to emphasise that the machine learning experiments performed

here were not meant to measure the algorithm performance that might

realistically be expected by Marine Directorate for each of the survey types in

future, but rather help us to develop and debug the machine learning

applications and teach the Marine Directorate future users the most

appropriate ways of creating datasets, training models and analysing results.

The numbers of labelled images in each of the above datasets were very low

for the standards of modern object detectors utilising deep learning such as

those we use here. The datasets included no more than 200 image frames in

most cases, which often came from one or just a few videos. Further, some

classes in the chosen schemas were very poorly represented in the training

sets (heavily imbalanced datasets). Hence, it is not surprising that the

https://docs.celeryq.dev/en/stable/getting-started/introduction.html
https://docs.celeryq.dev/en/stable/getting-started/introduction.html

16

resulting machine learning models could not generalise adequately, and the

reported performance of the system as measured using mean average

precision of the object detector was below the level that we would like to see

in a practical application.

The most satisfactory initial results were obtained for counting fish in

overhead in river counters for the River Daylight and River Infrared datasets.

The machine learning models were trained from datasets comprising 81

labelled fish and 61 otters (River Daylight) and 208 fish (River Infrared). Here,

the mean average precision ranged from 9% to 55% for a very challenging

condition where the test camera was not part of the training set, and for an

easier (and unrealistic) condition where some images from the training video

(not the same as in the training set) were part of the test set. The analysis of

the inference results confirms that the system was able to track fish and

otters. Some overcounting took place usually in places where unusual

(unseen during training) water turbulences were present, but these could be

eliminated if more images were available for training.

For Smolt Trawl and Vaki light boxes datasets, we have observed that the

chosen class schema (which included sex differentiation for salmon) was most

likely too ambitious for the limited size of the training set and consequently

resulted in low mean average precision of the object detector and ultimately

significant overcounting of fish in the videos. This teaches us that despite the

fact that fish were clearly visible in the videos provided (better visibility than in

overhead in-river counters discussed above), having too many (similar)

classes of fish may significantly degrade the performance of the detector and

consequently the tracker, in particular where the training set contains few

images.

The Sea Pens dataset has proven to be particularly challenging. The image

features are arguably more difficult to spot for the human observer than the

previous applications. The chosen class schema contained 10 classes of

which 7 had no more than 20 samples in the dataset. Consequently, the

reported mean average precision of the object detector was low and the

object tracking resulted in noticeable overcounting. The overcounting was

particularly significant for those parts of the videos where image features

related to the disturbed sediment (not seen in the training set) were present.

The machine learning experiments performed to this stage have proven that

the developed features of the web application work correctly for all datasets.

17

The performance of machine learning algorithms do vary between different

survey types and will require careful design of the class schema for each

survey type and the annotation of a greater number of images than were

available during the development of this application.

Other Resources

Further guidance on the features and the use of the AVIMS web application

are available to authorised users of AVIMS. The guidance includes an AVIMS

User Guide and Tutorial slides (see Annex Materials).

References

Bewley, A., Ge, Z., Ott, L., Ramos, F. and Upcroft, B. 2016. Simple online and

realtime tracking. In 2016 IEEE International Conference on Image

Processing (ICIP), 3464-3468.

Blowers, S., Evans, J. and McNally, K. 2020. Automated Identification of Fish

and Other Aquatic Life in Underwater Video. In: Scottish Marine and

Freshwater Science, Vol 11 No 18. 62pp. DOI: 10.7489/12333-1.

French, G., Mackiewicz, M., Fisher, M., Challiss, M., Knight, P., Robinson, B.

and Bloomfield, A. 2018. JellyMonitor: automated detection of jellyfish in sonar

images using neural networks. In: IEEE International Conference on Signal

Processing (ICSP), IEEE, 406-412.

French, G., Mackiewicz, M., Fisher, M., Holah, H., Kilburn, R., Campbell, N.

and Needle, C. 2020. Deep neural networks for analysis of fisheries

surveillance video and automated monitoring of fish discards. ICES Journal of

Marine Science, 77(4), 1340-1353.

Gorpincenko, A., French, G., Knight, P., Challiss, M. and Mackiewicz, M.

2020. Improving Automated Sonar Video Analysis to Notify About Jellyfish

Blooms. IEEE Sensors Journal.

https://doi.org/10.7489/12333-1

18

Annex Materials

Please see PDF supporting documents containing

1. User Guide
2. Tutorial Slides

Contact

Email: craig.robinson@gov.scot

mailto:craig.robinson@gov.scot

19

© Crown Copyright 2023

Marine Directorate of the Scottish Government

Marine Laboratory

375 Victoria Road

Aberdeen

AB11 9DB

Copies of this report are available from the Scottish Government Publications

website at https://www.gov.scot/publications/

https://www.gov.scot/publications/

© Crown copyright 2023

This publication is licensed under the terms of the Open Government Licence v3.0 except
where otherwise stated. To view this licence, visit nationalarchives.gov.uk/doc/open-
government-licence/version/3 or write to the Information Policy Team, The National
Archives, Kew, London TW9 4DU, or email: psi@nationalarchives.gsi.gov.uk.

Where we have identified any third party copyright information you will need to
obtain permission from the copyright holders concerned.

This publication is available at www.gov.scot

Any enquiries regarding this publication should be sent to us at
The Scottish Government
St Andrew’s House
Edinburgh
EH1 3DG

ISBN: 978-1-83521-505-0 (web only)

Published by The Scottish Government, November 2023

Produced for The Scottish Government by APS Group Scotland, 21 Tennant Street, Edinburgh EH6 5NA
PPDAS 1347782 (11/23)

w w w . g o v . s c o t

http://nationalarchives.gov.uk/doc/open-government-licence/version/3
http://nationalarchives.gov.uk/doc/open-government-licence/version/3
mailto:psi%40nationalarchives.gsi.gov.uk?subject=
http://www.gov.scot
http://www.gov.scot

