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Abstract  

In the course of its environmental monitoring activities, the Scottish 

Government’s Marine Directorate collects a large amount of underwater video 

to, for example, obtain information on the numbers of fish in rivers or on 

species living on the seabed. Manual analysis of this footage is laborious and 

costly, but Machine Learning algorithms can now be used to automate such 

image analysis. The Marine Directorate commissioned the University of East 

Anglia to develop a web-based application to allow staff to create, train and 

execute machine learning-based (semi-)automated analysis of video footage 

without a need to interact with the underlying computer code. The application 

was tested using three diverse sets of video footage and found to be usable 

by staff without computer science or coding experience. The tool was able to 

detect and count sea pens in footage from towed underwater vehicles, salmon 

smolts at sea in underwater footage from towed fishing gear and adult salmon 

and sea trout in footage from underwater or overhead cameras at fixed 

locations on rivers. Improving the accuracy of the models at detecting and 

counting organisms of interest will require the use of larger annotated 

datasets in further training of the algorithms, but the current application 

provides a basis for further developing these. 

 

Executive summary  

In this project we developed a web application entitled Automated Video 

Identification of Marine Species (AVIMS). The project was funded by Scottish 

Government Contract, CASE/216380. The objective was to develop an 

automated video analysis capability with a user-friendly graphical interface 

which could be used by the Scottish Government’s Marine Directorate 

biologists and stakeholders’ non-specialist staff who do not have computer 

science and coding expertise. 



 

 

2 

 

 

 

The Marine Directorate collects a large amount of underwater video for a 

number of different purposes. Analyses of these video data is time-

consuming, often requires a skilled taxonomist and hence constitutes a 

significant draw on resources. The high cost of the analyses of this large 

amount of data often results in situations where only a subset of the available 

video is fully analysed. Consequently, automated video analysis software 

performing the above tasks would be highly desirable as it would reduce the 

costs of carrying out the analyses and allow for the analysis of all available 

data. It is expected that due to a steady and rapid improvements in new 

sensor/camera technology and their decreasing costs, the amount of video 

data available will only increase making the current processing bottlenecks 

even more acute. 

 

To achieve that goal, the Scottish Government funded an earlier piece of work 

in this area - Automated Identification of Fish and Other Aquatic Life in 

Underwater Video (Blowers et al. 2020) in which the authors reviewed current 

image and video analysis methods and how these can be applied to different 

types of video footage and data extraction requirements used by the Marine 

Directorate. The authors also made recommendations for how video analysis 

could be automated using state of the art and open-source machine learning 

(deep learning) algorithms. We have followed the recommendations of 

Blowers et al. (2020) closely, making a number of important refinements. Our 

machine learning solution has been integrated and deployed as a user-

friendly web application - AVIMS.  

 

AVIMS allows users without computer science / coding experience to create, 

train and execute machine learning models without any need for interaction 

with the underlying code. The application supports computer vision models 

which fall into the common framework of detection of individuals from a 

predefined set of marine species, tracking detected individuals across the 

consecutive frames in the video, and finally, counting all distinct entities in the 

video for each species of interest (detect/track/count). 

 

The workflow of our web-based application implementing the above 

detect/track/count computer vision framework allows users to: create new 

survey types; define a set of species of interest for each survey type; upload 

video and image data for training machine learning models; annotate video 

and image data with objects of interest; create datasets comprising annotated 
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data for training machine learning models; train machine learning models; 

upload new videos for the analysis by the machine learning models created in 

the previous steps of the workflow and view or download the analysis results. 

 

The web application uses distributed computing to perform the required tasks. 

The computationally intensive tasks which include training machine learning 

models and analysing new videos are sent to a separate machine specifically 

equipped to handle this type of computations where they wait for their turn in a 

queue.  

 

The web application has been tested by the development team and Marine 

Directorate scientists on several survey types including overhead in-river fish 

counters, salmon smolts entrained by a trawl and videos of the seabed. The 

initial machine learning models created in the web application have been 

shown to perform the required tasks. This said, in order for the system to 

achieve the level of accuracy that is expected from a practical application, the 

current small amount of annotated video data will need to be expanded to 

allow the machine learning models to better learn the appearance of various 

marine species of interest. This can be achieved from within the delivered 

AVIMS application. 
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Introduction 

 

This report describes the system called the Automated Video Identification of 

Marine Species (AVIMS) that was developed by the authors as part of the 

Scottish Government contract, Ref: CASE/216380. 

 

The objective of this project was to develop an automated video analysis 

application with a user-friendly interface which could be used by Marine 

Directorate biologists and stakeholders’ non-specialist staff, without the need 

for coding/computer science expertise.  The requirement was that only open-

source algorithms are to be used. 

 

The project was meant to build upon a previous project funded by the Scottish 

Government - Automated Identification of Fish and Other Aquatic Life in 

Underwater Video (Blowers et al., 2020), which reviewed and recommended 

various approaches to automated image analysis in underwater video. The 

immediate aim of this project was to produce a software tool to allow the 

Marine Directorate to make cost-effective use of the video data which is used 

to underpin scientific advice for Ministers. 

 

Marine Directorate collects a large variety of underwater video for a number of 

different purposes. The data comes from cameras which can be towed (e.g. 

images of the seabed) or fixed (e.g. attached to drop-frames or trawl nets, or 

deployed at underwater turbines or in-river fish counters). 

 

Analyses of these video data is time-consuming, often requires a skilled 

taxonomist and hence constitutes a significant draw on resources. The high 

cost of the analyses of this large amount of data often results in situations 

where only a subset of the available video data can be fully analysed. 

Consequently, an automated video analysis software performing the above 

tasks would be highly desirable as it would reduce the costs of the existing 

activities and allow for the analysis of all available data. It is expected that due 

to a steady and fast improvements in the new sensor/camera technology and 

their decreasing costs, the amount of video data available will only increase 

making the current processing bottlenecks even more acute. 

 

To achieve that goal, the Scottish Government funded an earlier piece of work 

in this area (Blowers et al., 2020) where the authors reviewed current image 

and video analysis methods and how these can be applied to different types 

of video footage and data extraction requirements used by the Marine 
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Directorate. The authors also made recommendations for how video analysis 

could be automated using open-source machine learning algorithms. Our 

work builds on some of the recommendations from that work as well as on our 

own expertise in the field of computer vision and software development. 

 

The following three sections describe the Methodology and Design of the 

AVIMS web application, the computer vision approach we have chosen, the 

hardware and software specification, the datasets and experiments, and the 

other resources. 

 

Methodology and design 

 

The overall objective of this project was to develop an application that 

provides a user-friendly interface that allows Marine Directorate biologists – 

who do not have machine learning or programming expertise – to train 

computer vision and machine learning models for the purpose of analysing 

video footage, detecting and recognizing a range of species of fish and 

benthos. 

 

Our developed system is built on the work of (Blowers et al., 2020) and our 

prior experience from the EU funded H2020 Smartfish (SMARTFISH H2020 – 

Innovation for Sustainable Fisheries (smartfishh2020.eu), French et al., 2020) 

and JellyMonitor (French et al., 2018; Gorpincenko et al., 2020). Blowers et al. 

provided a feasibility study that considered a handful of entities of interest 

extracted from a few hundred video frames. Their work demonstrated the 

power of convolutional neural networks (CNNs) over other more traditional 

approaches and suggested a possible system architecture. We followed 

Blowers et al.’s recommendations closely, making a number of important 

refinements based on our experience developing larger scale systems 

capable of handling many more entities of interest.  

 

In the initial phase of the project, a number of meetings with Marine 

Directorate scientists took place which helped us to design and iteratively 

refine our approach so that the end product met Marine Directorate 

requirements. During this phase of the project we also obtained the video 

footage from Marine Directorate which included overhead or underwater 

footage from fish counters, fish surveys and seabed surveys. In this phase we 

considered whether our system will be a standalone desktop or a web based 

application. We decided to proceed with the latter as this was considered to 

meet the project requirements. The web based solution also offered the 

http://smartfishh2020.eu/
http://smartfishh2020.eu/
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possibility of concurrent and remote working with the evolving prototypes of 

the tool by a number of Marine Directorate scientists. This work included the 

upload of the datasets, the annotation of parts of the uploaded datasets and 

provision of feedback to the development team. 

 

Our application allows users without computer science / coding experience to 

create, train and execute computer vision models without any need of 

interaction with the underlying code. The application supports computer vision 

models which fall into the common framework of detection of objects from the 

predefined set of classes (schema), tracking detected objects across the 

consecutive frames in the video, and finally, counting all distinct objects in 

video for each class in the schema. 

 

The workflow of our web-based application which implements the above 

computer vision framework is as follows: 

 

Survey type. The application supports users in accomplishing a wide variety of 

tasks, e.g. counting fish and benthos in footage of the seabed or taken in fish 

survey work, and counting salmon in overhead footage from in-river fish 

counter sites. Given the differing appearance of the targets and the 

background in these tasks, the best performance is obtained by training 

separate models, even if both tasks share a general goal - counting entities of 

interest in a video. The application permits users to create different survey 

types for the various tasks that they wish to train models for. 

 

Schema design. Given that each survey type is aimed at accomplishing a 

different task, the entities of interest that the user wishes to quantify are likely 

to differ. The application therefore provides an interface that allows the user to 

specify the list of species or classes of fish or other entities that the model 

should count within the video. Each survey type has its own schema that 

corresponds to the goals of the survey. 

 

Video import. Videos selected by the user are added to the survey type with a 

view to extracting training images. 

 

Extraction of images from video. Still images are extracted from the video files 

to be annotated by the user in the subsequent stages. Here, the user is 

required to choose which frames in the video they wish to include in the 

dataset that will be used to train and test the machine learning model/s. While 

extracting and annotating every frame may yield a robust model, the effort 
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required to manually annotate potentially thousands of images will likely make 

this prohibitive. The user is presented with the graphical tool utilizing a 

traditional video slider where they scroll the video and choose the video 

frames they wish to be included in the dataset. These should be 

representative of the conditions in which the model is required to work. 

 

Annotation. The selected frames from the imported video/s need to be 

annotated by expert taxonomists in order to provide the ground-truth data for 

training and testing the trained machine learning models. The annotation tool, 

which was built on our earlier work (GitHub - Britefury/django-labeller: An 

image labelling tool for creating segmentation data sets, for Django and Flask 

(github.com)), is presented to the user, allowing them to identify entities of 

interest and annotate them, either using polygonal annotations or ellipses. We 

anticipate that after testing the model the user may wish to annotate more 

data in order to improve the model performance.  

 

Dataset construction. Machine learning requires an annotated training and 

testing set for training the model and evaluating its performance respectively. 

Segments from a single video are likely to share common visual appearance 

characteristics, e.g. lighting or turbidity due to time of day and weather 

conditions. Training a model on footage drawn from one part of a video would 

likely result in higher testing scores on footage from a different part of the 

same video than is achievable in the desired practical scenario of using the 

model to analyze footage from an as-of-yet unseen site. Here, our system 

allows for a number of approaches regarding how the data should be split so 

that the testing results are indicative of the future performance. 

 

Training and Testing. A subset of annotated images is used to train the model. 

This involves iteratively presenting images to the neural network and 

optimizing the network parameters. This is computationally expensive and can 

take hours to complete on a GPU server. A proportion of the dataset 

constructed above is marked for testing. These images are held out during 

training i.e. are not part of the training set, and given to the model for 

inference at this stage.  The predictions generated by the model are 

compared to the manually generated ground-truths. The system determines 

which objects of interest the model failed to detect (false negatives) and which 

detections produced by the model were spurious (false positives). The user is 

presented with these results.  

 

https://github.com/Britefury/django-labeller
https://github.com/Britefury/django-labeller
https://github.com/Britefury/django-labeller
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The mAP (mean Average Precision) is used as a measure of system accuracy 

during training. This figure combines model accuracies (average precisions) 

for each class separately, which are then averaged, forming one figure - mAP. 

For example, a mAP of 80% should be highly reliable over all classes. In this 

case, a user can be relatively confident about the model predictions and the 

subsequent tracking results, as long as the video passed for the subsequent 

analysis/inference (see Inference below) is "similar" to what the model has 

been trained on. 

 

Object tracker. Without an object tracker it is not possible to count objects in a 

video. The object detection model trained in prior stages detects entities in 

single frames. Using this alone would result in a significant over-count as an 

entity will be counted multiple times, once for each frame in which it is 

detected. The task of the object tracking system is to associate detections that 

correspond to a single entity across the frames in which that entity is visible. 

The user is presented with an interface that allows them to tune the tracker in 

order to achieve the most accurate results. 

 

Inference (analysis of new videos). Once a model has been trained and 

achieved an acceptable level of accuracy, the system uses the trained model 

to analyze videos provided by the user, outputting the desired results. This 

stage can also be computationally expensive (especially for long videos) and 

usually requires high performance computer hardware. 

 

Here, the user chooses a machine learning model for the task at hand and 

selects a set of videos for analysis. Once selected, the system processes the 

videos in turn, saving the event logs to a .csv and .json files which are 

available to the user for viewing either from the application GUI or for the 

download. The event logs contain an entry for each detected entity. The entry 

consists of a time stamp, the event duration, and a predicted class label of the 

object detected.  

 

Moreover, we considered adding a confidence score for each detection. 

However, eventually we decided not to add this feature as we did not have a 

reliable way of generating a confidence score that is correct and meaningful. 

While the system could provide such scores in theory, our 

experiments/observations show that these would not be helpful i.e. they are 

not really what a human would consider confidence/probability. 
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At the end of this stage, the user is also given an opportunity to add the 

video/s that have just undergone inference to the training dataset to improve 

the potential subsequent iteration of the machine learning model. This may be 

particularly worthwhile in cases where videos are substantially different to 

those present in the dataset used to train (and test) the model and have 

consequently returned unsatisfactory results in the inference stage. This 

maximizes the improvement in performance obtained by expanding the 

machine learning dataset. 

 

Our application supports a rapid annotate and test cycle, allowing the user to 

quickly assess the performance of the model and grow the training set in 

order to achieve the desired level of performance as quickly as possible. 

 

Computer Vision Approach 

 

The AVIMS system adopts a detect and track approach. An object detection 

model is applied to each frame in a video. The object detections resulting from 

this are passed to an object tracker that joins them into tracks that correspond 

to objects that are visible throughout multiple frames of a video. 

 

Object Detection 

 

Further to the recommendation of (Blowers, Evans and McNally, 2020), our 

application supports instance segmentation in addition to object detection. 

Where an object detection algorithm detects the presence of an object in an 

image and estimates its size, an instance segmentation algorithm proposes 

an outline surrounding the region of the image that the object covers. This can 

be advantageous in situations where the object density is very high, as the 

rectangular region proposed by an object detector can cover several objects, 

making the intended target ambiguous. 

 

The work of (Blowers, Evans and McNally, 2020) outlines technical details of 

some of the components described below. They discussed the Google Object 

Detection API – that is part of Tensorflow – as a potential approach for object 

detection. Tensorflow is one of a number of open source deep learning 

systems that are available. 

 

Many of the computer vision libraries provided by deep learning toolkits 

implement the Faster R-CNN object detection algorithm that proved to be a 

strong contender in (Blowers, Evans and McNally, 2020). It is expected that 
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the various implementations will offer similar accuracy. One such 

implementation we have used in the past is provided by the torchvision library 

(Torchvision 0.16 documentation (pytorch.org)) that is part of the PyTorch 

ecosystem (PyTorch - an open source machine learning framework 

(pytorch.org)). PyTorch is an open source deep learning toolkit developed by 

Facebook AI Research (FAIR) whose goals are very similar to those of 

Tensorflow. We also note that torchvision provides an implementation of the 

Mask R-CNN instance segmentation algorithm that we wished to utilise. Our 

choice of Pytorch over Tensorflow has been motivated by the ease of 

development using PyTorch in comparison to other systems and the ease with 

which it can be incorporated into the final deliverable application. Other 

systems including TensorFlow often require the installation of several 

dependent packages, complicating the installation process and also 

subsequent maintenance. 

 

Consequently, in this application we utilize the Faster-RCNN algorithm 

implementation provided by torchvision. They provide a model that combines 

an ImageNet (ImageNet (image-net.org)) pre-trained ResNet-50 (Deep 

Residual Learning for Image Recognition (arxiv.org)) backbone with an FPN 

head (Feature Pyramid Networks for Object Detection (arxiv.org)) and is fine-

tuned for object detection using the CoCo dataset (COCO - Common Objects 

in Context (cocodataset.org)). We adapted this network by removing the final 

class prediction and bounding box regression layers and replacing them with 

new layers with the appropriate outputs for the object classes defined by the 

labelling schema designed by the AVIMS site users. The network was fine-

tuned using the training dataset. 

 

AVIMS site offers the option – in fact defaults to it – of detecting objects as 

oriented ellipses rather than axis-aligned bounding boxes. Rather than using a 

specific oriented object detection network, we train a Mask-RCNN (Mask R-

CNN (arxiv.org)) instance segmentation model. We convert the oriented 

ellipse labels to masks with oriented elliptical shapes that are used as Mask-

RCNN training targets. Our algorithm takes the predicted instance mask and 

computes the closest fitting oriented ellipse using the regionprops function 

provided by the SciKit-Image library (scikit-image: Image processing in Python 

(scikit-image.com)). 

 

 

 

https://pytorch.org/vision/stable/index.html
https://pytorch.org/
https://pytorch.org/
https://www.image-net.org/
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1612.03144
https://cocodataset.org/
https://cocodataset.org/
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1703.06870
https://scikit-image.org/
https://scikit-image.org/
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Object tracking 

 

We noted the challenges posed by the requirement of accurate object 

tracking. Blowers, Evans and McNally (2020) found that inaccuracies in this 

component resulted in overcounting. We also noted the suggestion that the 

DeepSORT algorithm might provide a good solution to our object tracking 

problem. 

 

Accurate object tracking is dependent on accurate input from the object 

detector (Bewley et al. 2016); a prior stage in the inference pipeline. 

Inaccurate predictions from the detector are likely to negatively impact 

tracking performance. Furthermore, we note that the DeepSORT algorithm 

uses an association metric model for the purpose of object re-identification. It 

is used to estimate the likelihood that detections from different frames 

represent the same object. This model is trained using an annotated object 

tracking dataset. An object tracking dataset consists of annotated videos 

rather than single images and that each object must be annotated in every 

frame in which it can be seen. We note that annotating all frames in a video 

substantially increases the amount of manual effort required. While it is 

possible that the annotation tool forming the part of our web application could 

be extended for this purpose, the human effort required to annotate enough 

videos to train a sufficiently accurate model can make this approach 

practically infeasible. This is the reason why we have chosen the SORT 

algorithm (Bewley et al., 2016) for our object tracker; effectively DeepSORT 

without the association metric model. SORT takes the predictions of our 

object detection model as input and joins the per-frame predictions into object 

tracks. We use our own implementation of SORT. We use the Kalman filter 

implementation provided by the filterpy library. 

 

Hardware and Software Details 

 

In the following two subsections, we give hardware and software details of the 

application website (AVIMS site) and of the GPU worker (AVIMS worker) 

where the time consuming machine learning training and inference are 

performed. 
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AVIMS site 

 

Server Hardware and Operating System (OS) 

Our web-server is a virtual machine with 4GB of RAM running with a larger 

server. We use the Ubuntu Linux OS and NGINX web server. Our data is 

stored in a PostgresSQL database. Large files such as image and video files 

are stored on the file system. 

 

Web application 

Our web application uses the Django web application framework (The web 

framework for perfectionists with deadlines | Django (djangoproject.com)). 

Django provides an object relational mapper that provides object oriented 

access to the rows stored in the PostgresSQL database. Its template system 

simplifies the design of HTML web pages that incorporate data extracted from 

the database. 

 

We utilized the Twitter Bootstrap 4.3.1 framework (Introduction · Bootstrap 

(getbootstrap.com) to provide layout and user interface controls. AVIMS uses 

the Django-labeller labelling tool (GitHub - Britefury/django-labeller: An image 

labelling tool for creating segmentation data sets, for Django and Flask 

(github.com)) to allow users to annotate images quickly and effectively. 

 

Video handling 

The video files provided by the Marine Directorate came in a variety of 

formats, depending on their source. Early in the project we found that it was 

necessary to convert the video files to a common format. For this, we adopted 

FFMPEG (FFMPEG - A complete, cross-platform solution to record, convert 

and stream audio and video (ffmpeg.org)). FFMPEG was also able to convert 

interlaced video to a non-interlaced format in the instances where this was 

necessary. 

 

AVIMS worker 

 

Hardware 

Training object detection models and analysing video files requires the use of 

a GPU. We therefore performed these tasks on a separate machine with the 

nVidia 1080-Ti GPU, 32GB RAM and an Intel Core i7 CPU. 

 

 

 

https://www.djangoproject.com/
https://www.djangoproject.com/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://github.com/Britefury/django-labeller
https://github.com/Britefury/django-labeller
https://github.com/Britefury/django-labeller
http://ffmpeg.org/
http://ffmpeg.org/


 

 

15 

Software 

We used the Python Celery distributed task queue (Introduction to Celery — 

Celery 5.3.4 documentation (celeryq.dev)) to provide a task queue to run the 

machine learning tasks required by AVIMS. 

 

When an AVIMS user initiates a model training or video analysis job, the task 

is appended to the celery queue that runs on the web server. This job is 

retrieved by the GPU worker machine that downloads the relevant data from 

the web server. It runs the task while periodically reporting progress and 

finally uploads the results to the web server on completion. 

 

Datasets and Experiments 

 

During the development of the web application, we were provided with several 

video datasets which were meant to aid the development and testing of 

various aforementioned features of the AVIMS application. The datasets have 

been provided throughout the project by means of the evolving prototypes of 

the web application. They have been partially annotated by biologists at 

Marine Directorate using AVIMS tools.  This allowed us to produce initial 

machine learning models and test further functionalities of the AVIMS 

application including model training, results reporting and inference. 

 

The datasets provided have been split according to a survey type as 

described in the Methodology section and included : Sea Pens, Rocky Reef, 

River – infrared, River – daylight, Vaki light boxes, Smolt Trawl, fan mussels 

and horse mussels. 

 

It is important to emphasise that the machine learning experiments performed 

here were not meant to measure the algorithm performance that might 

realistically be expected by Marine Directorate for each of the survey types in 

future, but rather help us to develop and debug the machine learning 

applications and teach the Marine Directorate future users the most 

appropriate ways of creating datasets, training models and analysing results. 

 

The numbers of labelled images in each of the above datasets were very low 

for the standards of modern object detectors utilising deep learning such as 

those we use here. The datasets included no more than 200 image frames in 

most cases, which often came from one or just a few videos. Further, some 

classes in the chosen schemas were very poorly represented in the training 

sets (heavily imbalanced datasets). Hence, it is not surprising that the 

https://docs.celeryq.dev/en/stable/getting-started/introduction.html
https://docs.celeryq.dev/en/stable/getting-started/introduction.html
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resulting machine learning models could not generalise adequately, and the 

reported performance of the system as measured using mean average 

precision of the object detector was below the level that we would like to see 

in a practical application.  

 

The most satisfactory initial results were obtained for counting fish in 

overhead in river counters for the River Daylight and River Infrared datasets. 

The machine learning models were trained from datasets comprising 81 

labelled fish and 61 otters (River Daylight) and 208 fish (River Infrared). Here, 

the mean average precision ranged from 9% to 55% for a very challenging 

condition where the test camera was not part of the training set, and for an 

easier (and unrealistic) condition where some images from the training video 

(not the same as in the training set) were part of the test set. The analysis of 

the inference results confirms that the system was able to track fish and 

otters. Some overcounting took place usually in places where unusual 

(unseen during training) water turbulences were present, but these could be 

eliminated if more images were available for training. 

 

For Smolt Trawl and Vaki light boxes datasets, we have observed that the 

chosen class schema (which included sex differentiation for salmon) was most 

likely too ambitious for the limited size of the training set and consequently 

resulted in low mean average precision of the object detector and ultimately 

significant overcounting of fish in the videos. This teaches us that despite the 

fact that fish were clearly visible in the videos provided (better visibility than in 

overhead in-river counters discussed above), having too many (similar) 

classes of fish may significantly degrade the performance of the detector and 

consequently the tracker, in particular where the training set contains few 

images. 

 

The Sea Pens dataset has proven to be particularly challenging. The image 

features are arguably more difficult to spot for the human observer than the 

previous applications. The chosen class schema contained 10 classes of 

which 7 had no more than 20 samples in the dataset. Consequently, the 

reported mean average precision of the object detector was low and the 

object tracking resulted in noticeable overcounting. The overcounting was 

particularly significant for those parts of the videos where image features 

related to the disturbed sediment (not seen in the training set) were present. 

 

The machine learning experiments performed to this stage have proven that 

the developed features of the web application work correctly for all datasets. 
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The performance of machine learning algorithms do vary between different 

survey types and will require careful design of the class schema for each 

survey type and the annotation of a greater number of images than were 

available during the development of this application.  

 

Other Resources 

 

Further guidance on the features and the use of the AVIMS web application 

are available to authorised users of AVIMS. The guidance includes an AVIMS 

User Guide and Tutorial slides (see Annex Materials). 
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Annex Materials 

 
Please see PDF supporting documents containing  
 

1. User Guide 
2. Tutorial Slides  

 
 
Contact 

Email: craig.robinson@gov.scot  
  

mailto:craig.robinson@gov.scot
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