6.A	Tables of U-values and thermal conductivity
6.A.0	Introduction
6.A.1-3	Tables of windows, rooflights and doors
6.A.4-7	Tables of roofs (example calculations 1–3)
6.A.8-11	Tables of walls (example calculations 4–7)
6.A.12-14	Tables of ground floors (example calculations 8–9)
6.A.15-17	Tables of upper floors
6.A.18	Table of thermal conductivity of building materials

_

Tables of U-values and thermal conductivity

6.A.0 Introduction

The *U-value* tables in this Part give a "ready reckoner" approach to establishing the *U-values* of *construction* elements. It applies to all building types. If the designer considers that a more accurate calculation is appropriate for the design of the *building* then, for roofs, walls and floors, the procedures in Parts 6.B and 6.C can be used. When using the *U-value* tables, the following should be borne in mind:

- a. the values in these tables have been derived using the Combined Method, taking into account the effects of thermal bridging where appropriate;
- b. intermediate values can be obtained from the tables by linear interpolation.

The last table of this Part gives thermal conductivities of some common *building* materials. If however certified test values are available, these should be used in preference to those given in the table.

Windows, rooflights	Full details about calculating the U-value of a window or door are given in					
and doors	BS EN ISO 10077-1. This Part provides indicative U-values for windows,					
	rooflights and doors. Table 6.A.1 applies to windows (and rooflights) with wood or plastic frames. Table 6.A.2 applies to windows with metal frames, for which the adjustments (for thermal breaks and/or rooflights) in Table 6.A.3 should be applied					

Low-E coatings The *U-value* of a window or rooflight containing low-E *glazing* is influenced by the emissivity, ε_n , of the low-E coating. Low-E coatings are of two principal types, known as 'hard' and 'soft'. Hard coatings generally have emissivities in the range 0.15 to 0.2, and the data for $\varepsilon_n = 0.2$ should be used for hard coatings, if the emissivity is not specified or if the *glazing* is stated to be low-E but the type of coating is not specified. Soft coatings generally have emissivities in the range 0.05 to 0.1. The data for $\varepsilon_n = 0.1$ should be used for a soft coating if the emissivity is not specified.

When available, manufacturers' *U-values*, certified by a *notified body*, for windows, or rooflights or doors should be used in preference to the data given in these tables.

Adjustment
m or for rooflights
re [Note 5]
7
1
C
9
В
ô
C
9
В
7
2
6
6
5
4
9
5
4
4
3
N/A

Table 6.A.1: Indicative U-values (W/m²K) for windows, rooflights, doors with wood or plastic frames [1]

Notes:

1. The *U-values* in this table are based on the frame comprising 30% of the total window area.

2. The emissivities quoted are normal emissivities. (Corrected emissivity is used in the calculation of *glazing U-values*.) Uncoated glass is assumed to have a normal emissivity of 0.89.

3. The gas mixture is assumed to consist of 90% argon and 10% air.

4. For doors which are half-glazed the *U-value* of the door is the average of the appropriate window *U-value* and that of the non-glazed part of the door (e.g. 3.0 W/m²K for a wooden door).

5. For roof lights refer to table 6A3

/ • •	g	ap betwe	en panes
	6 mm	12 mm	16 mm or more
Double-glazing (air filled)	N/A	N/A	3.3
Double-glazing (low-E, $\epsilon_n = 0.2$)	3.3	2.8	2.6
Double-glazing (low-E, $\epsilon_n = 0.15$)	3.3	2.7	2.5
Double-glazing (low-E, $\epsilon_n = 0.1$)	3.2	2.6	2.4
Double-glazing (low-E, $\varepsilon_n = 0.05$)	3.2	2.5	2.3
Double-glazing (argon filled)	3.5	3.3	3.2
Double-glazing (low-E, ε_n = 0.2,argon filled)	3.0	2.6	2.5
Double-glazing (low-E, ε_n = 0.15,argon filled)	3.0	2.5	2.4
Double-glazing (low-E, $\varepsilon_n = 0.1$, argon filled)	2.9	2.4	2.3
Double-glazing (low-E, ε_n = 0.05, argon filled)	2.8	2.2	2.1
Triple-glazing (air filled)	2.9	2.6	2.5
Triple-glazing (low-E, $\varepsilon_n = 0.2$)	2.6	2.1	2.0
Triple-glazing (low-E, $\varepsilon_n = 0.15$)	2.5	2.1	2.0
Triple-glazing (low-E, $\varepsilon_n = 0.1$)	2.5	2.0	1.9
Triple-glazing (low-E, $\varepsilon_n = 0.05$)	2.4	1.9	1.8
Triple-glazing (argon-filled)	2.8	2.5	2.4
Triple-glazing (low-E, ε_n = 0.2, argon filled)	2.3	2.0	1.9
Triple-glazing (low-E, ε_n = 0.15, argon filled)	2.3	1.9	1.8
Triple-glazing (low-E, $\varepsilon_n = 0.1$, argon filled)	2.2	1.9	1.8
Triple-glazing (low-E, ε_n = 0.05, argon filled)	2.2	1.8	1.7
Notes:			

Table 6.A.2: Indicative U-values (W/m²K) for windows with metal frames (4 mm thermal break) [Notes 1 and 2]

1. The *U-values* in this table are based on the frame comprising 20% of the total window area.

2. For windows with metal frames incorporating a thermal break or rooflights , the adjustments given in Table 6.A.3 should be made to the *U-values* given in Table 6.A.2.

Table 6.A.3: Adjustments to	U-values in	Table 6.A.2 for	frames with	thermal
breaks				

	vertical window	roof window at 45°		horizontal rooflight	
Frame type	double or triple glazed	double glazed	triple glazed	double glazed	triple glazed
Wood or PVC-U frame	+ 0.0	+ 0.2	+ 0.2	+ 0.5	+ 0.3
Metal, 4 mm thermal break	+ 0.0	+ 0.3	+ 0.2	+ 0.5	+ 0.3
Metal, 8 mm thermal break	- 0.1	+ 0.2	+ 0.1	+ 0.4	+ 0.2
Metal, 12 mm thermal break	- 0.2	+ 0.1	+ 0.0	+ 0.3	+ 0.1
Metal, 16 mm thermal break	- 0.2	+ 0.1	+ 0.0	+ 0.3	+ 0.1
Metal, 20 mm thermal break	- 0.3	+ 0.0	- 0.1	+ 0.2	+ 0.0
Metal, 32 mm thermal break	- 0.4	- 0.1	- 0.2	+ 0.1	- 0.1

Roofs

 Table 6.A.4:
 Base thickness of insulation between ceiling ties/collars or rafters

		Thermal conductivity of insulant (W/m·K)						
	Desim	0.020	0.025	0.030	0.035	0.040	0.045	
	Design <i>U-value</i> (W/m ² K)	Base thickness of insulating material (mm)						
	Α	В	С	D	E	F	G	
1	0.15	371	464	557	649	742	835	
2	0.20	180	224	269	314	359	404	
3	0.25	118	148	178	207	237	266	
4	0.30	92	110	132	154	176	198	
5	0.35	77	91	105	122	140	157	

 Table 6.A.5:
 Base thickness of insulation between and over ceiling ties/collars or rafters

		Thermal conductivity of insulant (W/m-K)						
	Design	0.020	0.025	0.030	0.035	0.040	0.045	
	<i>U-value</i> (W/m ² K)	Base thickness of insulating material (mm) between and over ties/collars or rafters						
	Α	В	с	D	E	F	G	
1	0.10	228	272	317	363	410	457	
2	0.15	161	188	217	247	277	307	
3	0.20	128	147	167	188	210	232	
4	0.25	108	122	137	153	170	187	
5	0.30	92	105	117	130	143	157	
6	0.35	77	91	103	113	124	136	

Note:

Tables 6.A.4 and 6.A.5 are derived for roofs with the proportion of timber at 8%, corresponding to 48 mm wide 100mm deep timbers at 600 mm centres, excluding dwangs. For other proportions of timber the *U-value* can be calculated using the procedure in Part 6.B.

 Table 6.A.6:
 Base thickness for continuous insulation

		Thermal conductivity of insulant (W/m·K)						
	Docian	0.020	0.025	0.030	0.035	0.040	0.045	
	<i>U-value</i> (W/m ² K)	Base thickness of insulating material (mm)						
	А	В	С	D	Е	F	G	
1	0.10	197	247	296	345	394	444	
2	0.15	131	163	196	228	261	294	
3	0.20	97	122	146	170	194	219	
4	0.25	77	97	116	135	154	174	
5	0.30	64	80	96	112	128	144	
6	0.35	54	68	82	95	109	122	

		Thermal conductivity of insulant (W/m·K)					
		0.020	0.025	0.030	0.035	0.040	0.045
	Concrete slab density (kg/m³)	Reduct (r	ion in ba nm) for e	se thickn ach 100 n	ess of ins nm of coi	sulating n	naterial Ib
	А	В	С	D	Е	F	G
1	600	10	13	15	18	20	23
2	800	7	9	11	13	14	16
3	1100	5	6	8	9	10	11
4	1300	4	5	6	7	8	9
5	1700	2	2	3	3	4	4
6	2100	1	2	2	2	3	3
	Other materials and components	Reduction in base thickness of insulating material (mm)					
	A	В	С	D	Ш	F	G
7	9.5 mm plasterboard	1	2	2	2	3	3
8	12.5 mm plasterboard	2	2	2	3	3	4
9	13 mm sarking board	2	2	3	3	4	4
10	12 mm calcium silicate liner board	1	2	2	2	3	3
11	Roof space (pitched)	4	5	6	7	8	9
12	Roof space (flat)	3	4	5	6	6	7
13	19 mm roof tiles	0	1	1	1	1	1
14	19 mm asphalt (or 3 layers of felt)	1	1	1	1	2	2
15	50 mm screed	2	3	4	4	5	5

Table 6.A.7: Allowable reductions in thickness for common roof components

Pitched roof with insulation between and over ceiling ties/collars

Determine the thickness of the insulation layer above the ceiling ties that will achieve a U-value of 0.16 W/m²K for the roof construction shown below:

It is proposed to use mineral fibre insulation between and over the ties with a thermal conductivity of 0.040 W/m·K. Using Table 6.A.5:

From column F, row 2 of the table, the base thickness of insulation layer is 277 mm.

The base thickness may be reduced by taking account of the other materials as follows:

From Table 6.A.7:

19 mm roof tiles	column F, row 13	= 1 mm
Roof space (pitched)	column F, row 11	= 8 mm
12.5 mm plasterboard	column F, row 8	<u>= 3 mm</u>
Total reduction		= 12 mm

To achieve a U-value of 0.16 W/m²K the minimum thickness of the insulation layer over the joists, in addition to the 100 mm insulation between the joists, is therefore:

Base thickness less total reduction i.e. 277 - 100 - 12 = 165 mm.

Example 2 Concrete deck roof

Determine the thickness of the insulation layer that will achieve a U-value of 0.20 W/m²K for the roof *construction* shown below.

Using Table 6.A.6:

From column C, row 3 of the table, the base thickness of the insulation layer is 122 mm.

The base thickness may be reduced by taking account of the other materials as follows:

From Table 6.A.7:

3 layers of felt	column C, row 14	= 1 mm
150 mm concrete deck	column C, row 3	
adjusted for 150 mm thickness	s (1.5 x 6)	= <u>9mm</u>
Total reduction		= 10 mm

To achieve a U-value of 0.25 W/m²K, the minimum thickness of the insulation laver is therefore:

Base thickness less total reduction i.e. 122 - 10= 112 mm.

Walls

		Thermal conductivity of insulant (W/m·K)					
	Design <i>U-value</i>	0.020	0.025	0.030	0.035	0.040	0.045
	(W/m²K)	Base thickness of insulating material (mm)					
	A	В	С	D	Е	F	G
1	0.15	130	162	195	227	260	292
2	0.20	97	121	145	169	193	217
3	0.25	77	96	115	134	153	172
4	0.30	63	79	95	111	127	142
5	0.35	54	67	81	94	107	121
6	0.40	47	58	70	82	93	105
7	0.45	41	51	62	72	82	92

Table 6.A.8: Base thickness of insulation layer

Table 6.A.9: Allowable reductions in base thickness for common components

		Thermal conductivity of insulant (W/m·K)				-K)	
	Component	0.020	0.025	0.030	0.035	0.040	0.045
		Reduct	ion in ba	se thickn (m	ess of ins m)	sulating r	naterial
	A	В	С	D	Е	F	G
1	Cavity (25 mm or greater)	4	5	5	6	7	8
2	Outer leaf brick	3	3	4	5	5	6
3	13 mm plaster	1	1	1	1	1	1
4	13 mm lightweight plaster	2	2	2	3	3	4
5	9.5 mm plasterboard	1	2	2	2	3	3
6	12.5 mm plasterboard	2	2	2	3	3	4
7	Air space behind plasterboard dry lining	2	3	4	4	5	5
8	9 mm sheathing ply	1	2	2	2	3	3
9	20 mm cement render	1	1	1	1	2	2
10	13 mm tile hanging	0	0	0	1	1	1

		Thermal conductivity of insulant (W/m·K)					
		0.020	0.025	0.030	0.035	0.040	0.045
	Density (Kg/m³)	Reduction (mm) for	on in bas each 10	e thickr 0 mm o	ness of f concre	insulati ete	on
	Α	B	С	D	E	F	G
Concrete inner leaf							
1	600	9	11	13	15	17	20
2	800	7	9	10	12	14	16
3	1000	5	6	8	9	10	11
4	1200	4	5	6	7	8	9
5	1400	3	4	5	6	7	8
6	1600	3	3	4	5	6	6
7	1800	2	2	3	3	4	4
8	2000	2	2	2	3	3	3
9	2400	1	1	2	2	2	2
Cond	crete outer leaf or	single lea	fwall				
10	600	8	11	13	15	17	10

Table6.A.10:Allowablereductionsinbasethicknessforconcretecomponents

10	600	8	11	13	15	17	19
11	800	7	9	10	12	14	15
12	1000	5	6	7	8	10	11
13	1200	4	5	6	7	8	9
14	1400	3	4	5	6	6	7
15	1600	3	3	4	5	5	6
16	1800	2	2	3	3	3	4
17	2000	1	2	2	3	3	3
18	2400	1	1	2	2	2	2
18	2400	1	1	2	2	2	2

Table 6.A.11:	Allowable reductions	in base thickness	for insulated timber
framed walls			

	Thormal	Thermal conductivity of insulant (W/m·K)					
	conductivity of	0.020 Reduc	0.025 tion in I	0.030 base thi	0.035 ckness	0.040 of insu	0.045 lation
	frame (W/m·K)	material (mm) for each 100 mm of frame					
	Α	В	С	D	Е	F	G
0	0.020	53	66	79	92	105	118
1	0.025	47	59	71	83	95	107
2	0.030	43	54	65	75	86	97
3	0.035	39	49	59	69	79	89
4	0.040	36	45	55	64	73	82

Note:

The table above is derived for walls in which the proportion of timber is 15%, and this corresponds to 38 mm wide studs at 600 mm centres (see BR 443). For other proportions of timber the *U-value* can be calculated using the procedure in Part 6.B.

Multiply the values in the table by stud thickness ÷ 100mm

Masonry cavity wall with internal insulation

(For *buildings* where sound resisting *separating floors* and *separating walls* are provided, this *construction* may not provide appropriate resistance to flanking sound transmission)

Determine the thickness of the insulation layer that will achieve a *U-value* of $0.25 \text{ W/m}^2\text{K}$ for the wall *construction* shown below.

Using Table 6.A.8:

From **column B row 3** of the table, the base thickness of the insulation layer is **77 mm**.

The base thickness may be reduced by taking account of the other materials as follows:

From Table 6.A.9:

Brick outer leaf	column B, row 2	= 3 mm
Cavity	column B, row 1	= 4 mm
Plasterboard	column B, row 6	= 2 mm

And from table 6.A.10

Concrete block	column B, row 1	
adjusted for 150 mm	block thickness (1.5 x 9)	<u>= 13.5 mm</u>
Total reduction		= 22.5 mm

To achieve a U-value of 0.25 W/m²K, the minimum thickness of the insulation layer is therefore:

Base thickness less total reduction i.e. 77 - 22.5 = 54.5 mm

Example 3

Example 4

Masonry cavity wall filled with insulation with plasterboard on dabs

Determine the thickness of the insulation layer that will achieve a *U*-value of $0.25 \text{ W/m}^2\text{K}$ for the wall *construction* shown below. (This calculation assumes the effect of wall ties to be negligible).

Using Table 6.A.8:

From **column F, row 3** of the table, the base thickness of the insulation layer is **153 mm**.

The base thickness may be reduced by taking account of the other materials as follows:

From Table 6.A.9:

Brick outer leaf Plasterboard Air space behind	column F, row 2 column F, row 6	= 5 mm = 3 mm
plasterboard	column F, row 7	= 5 mm
And from Table 6.A.10:		
Concrete block Total reduction	column F, row 8	<u>= 3 mm</u> = 16 mm

To achieve a U-value of 0.25 W/m²K the minimum thickness of the insulation layer is therefore:

Base thickness less total reduction i.e. 153 - 16 = 137 mm

Masonry wall with partial cavity-fill

Determine the thickness of the insulation layer that will achieve a *U-value* of $0.25 \text{ W/m}^2\text{K}$ for the wall *construction* shown below.

Using Table 6.A.8:

From **column B row 3** of the table, the base thickness of the insulation layer is **77 mm**.

The base thickness may be reduced by taking account of the other materials as follows:

From Table 6.A.9:

Brick outer leaf	column B, row 2	= 3 mm
Cavity	column B, row 1	= 4 mm
Lightweight plaster	column B, row 4	= 2 mm

And from Table 6.A.10:

Concrete block	column B, row 5	<u>= 3 mm</u>
Total reduction		= 12 mm

To achieve a U-value of 0.25 W/m²K, the minimum thickness of the insulation layer is therefore:

Base thickness less total reduction i.e. 77 - 12 = 65 mm

Example 6a

Timber-frame wall

Determine the thickness of the internal insulation layer that will achieve a *U-value* of 0.25 W/m²K for the wall *construction* shown below. (Note this *construction* may be inappropriate where the wall should have a level of fire resistance.)

Using Table 6.A.8:

From **column C**, **row 3** of the table, the base thickness of the internal insulation layer is **96 mm**.

The base thickness may be reduced by taking account of the other materials as follows:

From Table 6.A.9:

column C, row 2	= 3 mm
column C, row 1	= 5 mm
column C, row 8	= 2 mm
column C, row 6	= 2 mm
	column C, row 2 column C, row 1 column C, row 8 column C, row 6

And from Table 6.A.11:

Timber frame	column C,	row 1		
(not necessary to	o adjust as is	100mm th	nick frame) <u>=5</u>	<u>9 mm</u>
Total reduction			= 7	1 mm

To achieve a *U-value* of 0.25 W/m²K the minimum thickness of the internal insulation layer is therefore:

Base thickness less total reduction i.e. 96 - 71 = 25 mm

Alternative version of example 6:-

Example 6b Determine the thickness of the cavity (or internal) insulation that will achieve a *U-value* of 0.25 W/m²K for the wall construction shown, with insulation of conductivity 0.025 W/m·K between 89 mm studs and continuous insulation in the cavity of conductivity 0.040 W/m·K.

Using Table 6.A.8:

From $column\ F,\ row\ 3$ of the table, the base thickness of the continuous insulation layer is $153\ mm$

The base thickness may be reduced by taking account of the other materials as follows:

From Table 6.A.9:

Brick outer leaf	column C, row 2	= 3 mm
Cavity	column C, row 1	= 5 mm
Sheathing ply	column C, row 8	= 2 mm
Plasterboard	column C, row 6	= 2 mm

And from Table 6.A.11:

Timber frame	column F, row 1 (λ = 0.025)	= 95mm
adjusted for 89 r	mm thick frame (95 mm x 89 mm / 100 mm)	<u>= 85 mm</u>
Total reduction		= 97 mm

To achieve a *U-value* of 0.25 W/m²K the minimum thickness of the internal insulation layer is therefore:

Base thickness less total reduction i.e. 153 - 97 = 56 mm

Note: In using the tables for floors, the P/A ratio should be calculated first, where P is the floor perimeter length in metres; and A is the floor area in square metres.

		Thermal conductivity of insulant (W/m·K)						
	P/A	0.020	0.025	0.030	0.035	0.040	0.045	
	Α	В	С	D	E	F	G	
		Insu	lation thicl	kness (mm) for <i>U-val</i>	ue of 0.15 \	N/m²K	
1	1.00	112	140	168	196	224	253	
2	0.90	111	138	166	194	222	250	
3	0.80	109	136	164	191	218	246	
4	0.70	107	134	160	187	214	241	
5	0.60	104	130	156	182	208	233	
6	0.50	100	125	150	175	200	225	
7	0.40	94	117	141	164	188	211	
8	0.30	84	105	126	147	168	189	
9	0.20	68	85	102	119	136	154	
		Insu	lation thicl	kness (mm) for <i>U-val</i>	ue of 0.20 \	<i>N/</i> m²K	
10	1.00	81	101	121	142	162	182	
11	0.90	80	100	120	140	160	180	
12	0.80	78	98	118	137	157	177	
13	0.70	77	96	115	134	153	173	
14	0.60	74	93	112	130	149	167	
15	0.50	71	89	107	125	143	160	
16	0.40	67	84	100	117	134	150	
17	0.30	60	74	89	104	119	134	
18	0.20	46	57	69	80	92	103	
		Insu	lation thic	kness (mm) for <i>U-val</i> i	ue of 0.25 \	N/m²K	
19	1.00	61	76	91	107	122	137	
20	0.90	60	75	90	105	120	135	
21	0.80	58	73	88	102	117	132	
22	0.70	57	71	85	99	113	128	
23	0.60	54	68	82	95	109	122	
24	0.50	51	64	77	90	103	115	
25	0.40	47	59	70	82	94	105	
26	0.30	40	49	59	69	79	89	
27	0.20	26	32	39	45	52	58	
		Insu	lation thicl	kness (mm) for <i>U-val</i>	ue of 0.30 \	N/m²K	
28	1.00	48	60	71	83	95	107	
29	0.90	47	58	70	81	93	105	
30	0.80	45	56	68	79	90	102	
31	0.70	43	54	65	76	87	98	
32	0.60	41	51	62	72	82	92	
33	0.50	38	47	57	66	76	85	
34	0.40	33	42	50	59	67	75	
35	0.30	26	33	39	46	53	59	
36	0.20	13	16	19	22	25	28	

Table 6.A.12: Insulation thickness for ground supported solid floors

Note: **P/A** is the ratio of floor perimeter (m) to floor area (m²).

	Thermal conductivity of insulant (W/m·K)						
	P/A	0.020	0.025	0.030	0.035	0.040	0.045
	Α	В	С	D	Е	F	G
		Insula	tion thickr	ness (mm)	for U-val	ue of 0.15 \	N/m²K
1	1.00	178	204	230	257	283	308
2	0.90	177	203	228	254	280	305
3	0.80	175	201	226	252	278	303
4	0.70	172	198	223	249	274	299
5	0.60	169	194	219	245	270	294
6	0.50	165	190	214	239	263	287
7	0.40	159	183	206	230	254	277
8	0.30	150	172	194	216	238	260
9	0.20	131	151	171	191	210	230
		Insula	ation thickr	ness (mm)	for <i>U-val</i>	ue of 0.20 \	N/m²K
10	1.00	127	145	164	182	200	218
11	0.90	125	144	162	180	198	216
12	0.80	123	142	160	178	195	213
13	0.70	121	139	157	175	192	209
14	0.60	118	136	153	171	188	204
15	0.50	114	131	148	165	181	198
16	0.40	109	125	141	157	173	188
17	0.30	99	115	129	144	159	173
18	0.20	82	95	107	120	132	144
		Insula	tion thickr	ness (mm)	for <i>U-val</i>	ue of 0.25 \	N/m ² K
19	1.00	93	107	121	135	149	162
20	0.90	92	106	119	133	146	160
21	0.80	90	104	117	131	144	157
22	0.70	88	101	114	127	140	153
23	0.60	85	98	111	123	136	148
24	0.50	81	93	106	118	130	142
25	0.40	75	87	99	110	121	132
26	0.30	66	77	87	97	107	117
27	0.20	49	57	65	73	81	88
		Insula	tion thickr	ness (mm)	for <i>U-val</i>	ue of 0.30 \	N/m²K
28	1.00	71	82	93	104	114	125
29	0.90	70	80	91	102	112	122
30	0.80	68	78	89	99	109	119
31	0.70	66	76	86	96	106	116
32	0.60	63	73	82	92	102	111
33	0.50	59	68	78	87	96	104
34	0.40	53	62	70	79	87	95
35	0.30	45	52	59	66	73	80
36	0.20	28	33	38	42	47	51

 Table 6.A.13: Insulation thickness for suspended timber ground floors

Note: **P/A** is the ratio of floor perimeter (m) to floor area (m^2). The table is derived for suspended timber floors for which the proportion of timber is 12%, which corresponds to 48 mm wide timbers at 400 mm centres.

U	Thermal conductivity of insulant (W/m ² K)						
	P/A	0.020	0.025	0.030	0.035	0.040	0.045
	Α	В	С	D	E	F	G
		Insula	tion thickn	ness (mm) f	for U-value	e of 0.15 W	/m2K
1	1.00	114	142	171	199	228	256
2	0.90	113	141	170	198	226	254
3	0.80	112	140	168	196	224	252
4	0.70	110	138	166	193	221	249
5	0.60	109	136	164	191	218	245
6	0.50	107	134	160	187	214	241
7	0.40	104	129	155	181	207	233
8	0.30	98	123	148	172	197	222
9	0.20	89	111	133	155	177	199
	L	Insula	tion thickr	ness (mm)	for <i>U-value</i>	e of 0.20 W	/m²K
10	1.00	82	103	123	144	164	185
11	0.90	81	101	122	142	162	183
12	0.80	80	100	120	140	160	180
13	0.70	79	99	118	138	158	177
14	0.60	77	96	116	135	154	173
15	0.50	75	93	112	131	150	168
16	0.40	71	89	107	125	143	161
17	0.30	66	82	99	115	132	148
18	0.20	56	69	83	97	111	125
		Insula	ation thickr	ness (mm)	for <i>U-value</i>	e of 0.25 W	/m²K
19	1.00	62	78	93	109	124	140
20	0.90	61	76	92	107	122	138
21	0.80	60	75	90	105	120	135
22	0.70	59	74	88	103	118	132
23	0.60	57	71	86	100	114	128
24	0.50	55	68	82	96	110	123
25	0.40	51	64	77	90	103	116
26	0.30	46	57	69	80	92	103
27	0.20	36	45	54	62	71	80
		Insula	ation thickr	ness (mm) ⁻	for <i>U-value</i>	e of 0.30 W	/m²K
28	1.00	49	61	73	85	97	110
29	0.90	48	60	72	84	96	108
30	0.80	47	59	70	82	94	105
31	0.70	45	57	68	80	91	102
32	0.60	44	55	66	77	88	98
33	0.50	41	52	62	72	83	93
34	0.40	38	48	57	67	76	86
35	0.30	33	41	49	57	65	73
36	0.20	22	28	33	39	44	50

 Table 6.A.14: Insulation thickness for suspended concrete beam and block ground floors

Note: **P/A** is the ratio of floor perimeter (m) to floor area (m²)

Solid floor in contact with the ground

Determine the thickness of the insulation layer that will achieve a *U-value* of $0.20 \text{ W/m}^2\text{K}$ for the ground floor slab shown below.

It is proposed to use insulation with a thermal conductivity of 0.025 W/m·K.

The overall perimeter length of the slab is: (10 + 4 + 4 + 2 + 6 + 6) = 32 m.

The floor area of the slab is: $(6 \times 6) + (4 \times 4) = 52 \text{ m}^2$.

The ratio: $\frac{\text{perimeter length}}{\text{floor area}} = \frac{32}{52} = 0.6$

Using Table 6.A.12, column C, row 14 indicates that 93 mm of insulation is appropriate.

Example 8 Suspended timber floor

If the floor shown above was of suspended timber *construction*, the perimeter length and floor area would be the same, yielding the same ratio of:

$$\frac{\text{perimeter length}}{\text{floor area}} = \frac{32}{52} = 0.6$$

To achieve a *U-value* of 0.20 $W/m^2 \cdot K$, using insulation with a thermal conductivity of 0.040 $W/m \cdot K$, Table 6.A.13 **column F, row 14** indicates that the insulation thickness between the joists should be not less than **149 mm**.

Table 6.A.15: Upper floors of timber construction

		Thermal conductivity of insulant (W/m·K)					
De	esign <i>U-value</i> <i>(</i> W/m²K <i>)</i>	0.020	0.025	0.030	0.035	0.040	0.045
		Base thickness of insulation between joists to achieve design <i>U-value</i>					
	Α	В	С	D	E	F	G
1	0.15	370	462	555	647	739	832
2	0.20	167	211	256	298	341	383
3	0.25	109	136	163	193	225	253
4	0.30	80	100	120	140	160	184

Note:

Table 6.A.15 is derived for floors with the proportion of timber at 12% which corresponds to 48 mm wide timbers at 400 mm centres. For other proportions of timber the *U-value* can be calculated using the procedure in Part 6.B.

Table 6.A.16: Up	per floors (of concrete	construction

			Thermal conductivity of insulant (W/m·K)				
Design <i>U-value</i> (W/m ² K)		0.020	0.025	0.030	0.035	0.040	0.045
	Base thickness of insulation to achieve design <i>U-value</i>					-value	
	Α	В	С	D	Е	F	G
1	0.15	129	161	194	226	258	291
2	0.20	95	119	142	166	190	214
3	0.25	75	94	112	131	150	169
4	0.30	62	77	92	108	123	139

 Table 6.A.17:
 Upper floors:
 allowable reductions in base thickness for common components

			Thermal conductivity of insulant (W/m·K)				
		0.020	0.025	0.030	0.035	0.040	0.045
(Component Reduction in base thickness of insulation material (mm)					l (mm)	
	Α	В	С	D	Е	F	G
1	9.5 mm plasterboard	1	2	2	2	3	3
2	19 mm timber flooring	3	3	4	5	5	6
3	50 mm screed	2	3	4	4	5	5

		Density (kg/m³)	Conductivity (W/m·K)
Walls	Brickwork (outer leaf)	1700	0.77
	Brickwork (inner leaf)	1700	0.56
	Lightweight aggregate concrete block	1400	0.57
	Autoclaved aerated concrete block	600	0.18
	Concrete (medium density)	1800	1.13
		2000	1.33
		2200	1.59
	Concrete (high density)	2400	1.93
	Reinforced concrete (1% steel)	2300	2.3
	Reinforced concrete (2% steel)	2400	2.5
	Mortar (protected)	1750	0.88
	Mortar (exposed)	1750	0.94
	Gypsum	600	0.18
		900	0.30
		1200	0.43
	Sandstone	2600	2.3
	Limestone (soft)	1800	1.1
	Limestone (hard)	2200	1.7
	Timber framing in prefabricated wall panels	480	0.12
	Timber (softwood, plywood, chipboard)	500	0.13
	Timber (hardwood)	700	0.18
Surface finishes	Plasterboard	700	0.21
	Fibreboard	400	0.1
	Tiles (ceramic)	2300	1.3
	External sand-cement rendering	1300	1.0
	Plaster (dense)	1300	0.57
	Plaster (lightweight)	600	0.18
Roofs	Aerated concrete slab	500	0.16
	Asphalt	2100	0.70
	Felt/bitumen layers	1100	0.23
	Screed	1200	0.41
	Stone chippings	2000	2.0
	Tiles (clay)	2000	1.0
	Tiles (concrete)	2100	1.5
	Wood wool slab	500	0.10

Table 6.A.18:	Thermal conductivity	of some common	construction materials

Table 6.A.18 (continued)		Density (kg/m³)	Conductivity (W/m·K)
	Metal tray (steel)	7800	50.0
	Screed	1200	0.41
	Timber (hardwood)	700	0.18
	Timber (softwood, plywood, chipboard)	500	0.13

Note:

If available, certified test values should be used in preference to those in the table. Information on typical thermal conductivities of common insulation materials is given at www.timsa.org.uk.